Dynamic Failure of Metallic Cellular Materials
نویسنده
چکیده
The quasi-static and dynamic compressive behavior of open-cell foams, textile cores, and pyramidal truss cores were investigated using a combination of experimental apparatus. Quasi-static tests were performed using a miniature loading stage and a Kolsky bar apparatus was used for intermediate deformation rates. For high deformation rates, a gas gun was employed. Optical observations of the sample deformation were performed in real time by means of high-speed photography. The deformation modes were investigated in detail from acquired images and digital image correlation. For the open cell foams, comparison between deformation fields under quasi-static and Kolsky bar loading revealed a moderate micro-inertia effect, where the inertia associated to the bending and buckling of ligaments delayed strain localization. Gas gun experiments performed on the same samples revealed a totally different deformation mode. A crashing shock wave was generated at the impact surface and propagated through the specimen. In these experiments both forward and reverse impact tests were performed to interrogate the state of stress in front and behind the shock wave front. Through these experiments, it was confirmed that the generation and propagation of shock waves within foam materials greatly enhance their energy absorption. For the case of textile cores, the mechanical response was found to be similar to the open cell foam materials. No significant difference in load-deformation histories and failure modes were observed between quasi-static and intermediate deformation rates. As in the case of open cell foams, at high deformation rates, the failure mode was governed by the development of a crushing shock wave. For the truss cores, significant deformation rate effects on peak stress and energy absorption were identified. Inertia effects appeared to dominate the core response because of two effects: i) the propagation of a plastic wave along the truss members, and ii) buckling induced lateral motion. In this article we provide a quantification of load-deformation response and associated failure modes across the sample as captured by high speed photography and image correlation.
منابع مشابه
Strain Rate Effects in Metallic Cellular Materials
The high strain rate behavior of two cellular materials was investigated using a quasi-static loading stage and a Kolsky bar apparatus. The yield stress of these core materials under dynamic loading was found higher than in quasi-static loading. However, the plateau stress after yielding is not so sensitive to strain rate. For Aluminum foam materials, the deformation was more localized for quas...
متن کاملDynamic cellular manufacturing system considering machine failure and workload balance
Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (par...
متن کاملTransition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses.
Amorphous metallic alloys, or metallic glasses, are lucrative engineering materials owing to their superior mechanical properties such as high strength and large elastic strain. However, their main drawback is their propensity for highly catastrophic failure through rapid shear banding, significantly undercutting their structural applications. Here, we show that when reduced to 100 nm, Zr-based...
متن کاملAn Experimental and Theoretical Investigation of Corrosion Mechanism in a Metallic Stack
This paper presents an experimental and theoretical investigation of the causes of corrosion of stack in a cement plant. In this paper, information related to metallic stack failures are given in the form of a case study in Neka Cement Plant, Mazandaran, Iran. Heavy corrosion attacks were observed on the samples of stack. The failure can be caused by one or more modes such as overheating, stres...
متن کاملPlastic Behavior of Metallic Damping Materials under Cyclical Shear Loading
Metallic shear panel dampers (SPDs) have been widely adopted in seismic engineering. In this study, axial and torsional specimens of four types of metallic damping materials, including three conventional metallic steels as well as low yield strength steel 160 (LYS160), were tested in order to investigate the material response under repeated large plastic strain and low cycle fatigue between 10 ...
متن کاملA Multi-objective Optimization Model for Dynamic Virtual Cellular Manufacturing Systems
Companies and firms, nowadays, due to mounting competition and product diversity, seek to apply virtual cellular manufacturing systems to reduce production costs and improve quality of the products. In addition, as a result of rapid advancement of technology and the reduction of product life cycle, production systems have turned towards dynamic production environments. Dynamic cellular manufact...
متن کامل